Gyro Turns

By Droids Robotics
Lesson Objectives

1. Learn what Gyro Lag is
2. Learn one way to correct for this lag
3. Understand why it is important to explore alternative solutions to a problem

↑ Pre-requisites: My Blocks with Inputs and Outputs, Data wires, Math Blocks, Loops
What is lag?

The gyro sensor readings lag behind the true value sometimes.

When the turn starts, it takes time for the gyro to begin changing.

This lesson presents one way to deal with lag in a turn: reduce the amount of angle that you turn to compensate for lag.
1. In this lesson we use the Wait Block (gyro sensor) in Change Mode
2. Advantages over Compare Mode:
 • You do not need to reset the gyro beforehand
 • You can measure if the value has changed the target degrees by both decreasing or increasing (no need to change the wait block for a left turn)
3. Direction (the first input) defines:
 • 0 – check if the value has increased the desired degrees
 • 1 – check if the value has decreased the desired degrees
 • 2 – check if the value has either increased or decreased the desired degrees
STEP 1: Create a simple Gyro Turn program that turns 90 degrees using the Wait for Gyro block in Change Mode

Remember to Calibrate the Gyro before the Wait For Block (see Gyro Lesson for help)

STEP 2: Compensate for Lag

A. Compensate for the lag by reducing the amount of angle to turn based on your robot (e.g. 86 degrees instead of 90 degrees)

B. Use a Math Block to create an automatic calculator to compensate for lag

STEP 3: Create and Wire the My Block

STEP 4: Repeat the steps to make one for Left Turns vs. one for Right Turns.
Step 1: Simple Gyro Turn

GOAL OF THE PROGRAM: Simple turn degrees using the gyro

This code is setup for the gyro being connected to port 2; adjust as needed. Install tips: The gyro can be anywhere on your robot (even hidden or upside down is okay).

This program turns and waits for the gyro to read 90 degrees. This will make the robot turn 90 degrees to the right.

STEP 1: YOU NEED TO Calibrate THE GYRO: We have these two blocks here because the gyro sensor reading sometimes continues to go up even though the robot is still. By reading the rate of the gyro then the angle the gyro sensor gets recalibrated. Make sure to run these blocks when the robot is still.

We wait 0.1 seconds because it takes time for the gyro sensor to reset to zero.
Step 2A: Dealing with Lag

Problem with the Step 1: You will find that the gyro does not go the degrees you want it to. If you set it to turn 90 degrees, sometimes it overshoots to 93. You need to make adjustments for your robot because of this. For ours, we needed to turn only 86 degrees in order to turn 90 degrees.

Program goal: A more precise gyro turn

This program turns the robot a bit less than 90 degrees to reach exactly 90 degrees. This value will have to be changed for your robot. The reason the robot does not turn exactly 90 deg. when you type in 90 is because the gyro readings lag behind the robot’s actual position.
Step 2B: Automatically Correct for Lag

Program goal: subtract degrees automatically

We subtract 4 degrees from your desired degrees using a math block, so we do not need to type in 86 degrees to do a 90 degree turn.
Step 3A: Create a My Block

A. Highlight all the blocks then go to My Block Builder

B. Add 2 inputs: one for power and one for degrees

Refer to the My Blocks with Inputs & Outputs lesson if you need help setting up the My Block
Stage 3B: Wire the My Block

Connect the degrees value into the math block and the power into the move steering block.
Stage 4: Using the My Block

Here is our final stage, it is the same as Step 3, but converted into a my block. It has two inputs, degrees and power. Double click on the my block(s) to see inside.

DO NOT SELECT the gyro calibrate blocks while making the My Block.

Here two different my blocks that have been made turn left and right.
Step 4: Turn Degrees Right

This program is the same as Step 2 other than it is a my block. It was made with two numeric inputs: Power and degrees.
Step 4: Turn Degrees Left

This program is the same as Step 2 other than it is a my block. This has been converted to turn left. It was made with two numeric inputs: Power and degrees.
What is gyro lag?
Ans. The gyro sensor’s reading lags behind the true reading

What is one way to compensate for lag?
Ans: Reduce the number of degrees that you turn
This tutorial was written by Sanjay Seshan and Arvind Seshan from Droids Robotics

More lessons at www.ev3lessons.com

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.